

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 9701/34

Paper 3 Advanced Practical Skills 2

May/June 2024

2 hours

You must answer on the question paper.

You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

Session	
Laboratory	

For Examiner's Use				
1				
2				
3				
Total				

This document has 12 pages.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

2

Show the precision of the apparatus you used in the data you record.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

In this experiment you will determine the relative formula mass, M_r , of a basic metal carbonate, $MCO_3 \cdot M(OH)_2$, by a titration method.

FB 1 is the basic metal carbonate MCO₃•M(OH)₂.

FB 2 is a solution containing hydrochloric acid, HCl, and MCl_2 , prepared using **FB 1** as follows.

- 22.50 g of **FB 1**, MCO₃•M(OH)₂, is weighed out.
- 100.0 cm³ of 5.00 mol dm⁻³ hydrochloric acid (a small excess) is added to **FB 1**.
- The mixture is left to allow FB 1 to react completely.

$$MCO_3 \cdot M(OH)_2(s) + 4HCl(aq) \rightarrow 2MCl_2(aq) + CO_2(g) + 3H_2O(l)$$

- The resulting solution is made up to 1.00 dm³ with distilled water.
- This solution is **FB 2**.

FB 3 is potassium hydroxide, KOH, of concentration 5.05 g dm⁻³.

FB 4 is thymolphthalein indicator.

(a) Method

- Fill the burette with FB 2.
- Pipette 25.0 cm³ of **FB 3** into a conical flask.
- Add a few drops of FB 4 to the conical flask.
- Perform a rough titration and record your burette readings in the space below.

The rough titre iscm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.

9701/34/M/J/24

 Record, in a suitable form in the space below, all your burette readings and the volume of FB 2 added in each accurate titration.

Ι	
II	
III	
IV	
V	
VI	
VII	

0019000020003	

(b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtain the mean value.

3

(c) Calculations

- Give your answers to (c)(ii), (c)(iii) and (c)(iv) to an appropriate number of significant figures. [1]
- Calculate the amount, in mol, of potassium hydroxide present in 25.0 cm³ of **FB 3**.

amount of KOH =mol [1]

Give the ionic equation for the reaction of hydrochloric acid with potassium hydroxide during the titration. Include state symbols.

Hence calculate the concentration, in mol dm⁻³, of hydrochloric acid in **FB 2**.

concentration of $HCl = \dots mol dm^{-3}$

Use the information about FB 2 and your answer to (c)(iii) to calculate the relative formula mass, M_r , of $MCO_3 \cdot M(OH)_2$.

$$M_{\rm r} \text{ of MCO}_3 \cdot \text{M(OH)}_2 = \dots$$
 [2]

(d) A student suggested that the procedure used in (a) would be more accurate if the mass of FB 1 used to prepare solution FB 2 is doubled. No other change to the procedure is made.

Explain why the student is **not** correct.

[Total: 15]

2 In this experiment you will determine the relative atomic mass, A_r , of metal **M** by thermal decomposition of the same basic metal carbonate, $MCO_3 \cdot M(OH)_2$, **FB 1**.

(a) Method

- Weigh the empty crucible with its lid. Record the mass in the results section.
- Transfer all of the FB 1 from the container into the crucible.
- Weigh the crucible, lid and FB 1. Record the mass.
- Calculate the mass of FB 1 used. Record this mass in the space for other results.
- Place the crucible and contents on a pipe-clay triangle.
- Heat the crucible gently, with the lid on, for approximately 1 minute.
- Heat strongly, with the lid off, for a further 5 minutes.
- Replace the lid and leave the crucible to cool for at least 5 minutes.

During the cooling period, you may wish to begin work on Question 3.

- When the crucible is cool, weigh the crucible with its lid and contents. Record the mass.
- Place the crucible and contents on the pipe-clay triangle. Remove the lid.
- Heat strongly for a further 2 minutes.
- Replace the lid and leave the crucible to cool for at least 5 minutes.
- When the crucible is cool, reweigh the crucible with its lid and contents. Record the mass.
- Calculate the mass of residue obtained. Record this mass in the space for other results.

Results

mass of empty crucible and lid	=
mass of crucible, lid and FB 1 (before heating)	=
mass of crucible, lid and FB 1 (after first heating)	=
mass of crucible, lid and FB 1 (after second heating)	=

Other results

I	
II	
III	
IV	
[4]	

(b) Calculations

(i)	When FB 1 undergoes thermal decomposition, the products are the metal oxide, N carbon dioxide and water vapour. Give the equation for the thermal decomposition of FB 1 . Include state symbols.	ЛO,
		[1]

5

ii) The amount, in mol, of carbon dioxide produced is given by the following formula.

amount of
$$CO_2 = \frac{\text{mass loss during heating}}{(M_r \text{ of } CO_2 + M_r \text{ of } H_2O)}$$

Calculate the amount, in mol, of carbon dioxide produced in (a).

amount of
$$CO_2 = \dots mol [1]$$

(iii) Calculate the relative formula mass, $M_{\rm r}$, of the basic metal carbonate.

$$M_{\rm r}$$
 of $MCO_3 \cdot M(OH)_2 = \dots$ [1]

(iv) Use your answer to (b)(iii) to calculate the relative atomic mass, A_r , of metal M. Show your working.

$$A_{\rm r}$$
 of **M** =[1]

(c) (i) Explain why the headings for the third and fourth readings in the results section in (a) are not suitable.

[1]

(ii) State whether or not your experiment would be more accurate if the crucible and its contents were heated for a third time. Explain your answer by referring to your results in (a).

(iii) A student carries out the experiments in **Questions 1** and **2**. The student expects the value of the M_r of $MCO_3 \circ M(OH)_2$ obtained by thermal decomposition in **Question 2** to be more accurate than the value of the M_r obtained by titration in **Question 1**.

State one reason why the student expects the experiment in Question 2 to be more accurate.

	• •
ra	
	IJ

[Total: 11]

Qualitative analysis

For each test you should record all your observations in the spaces provided.

Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added

6

the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.

Where no change is observed, you should write 'no change'.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used. If a solid is heated, a hard-glass test-tube must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests should be attempted.

3	(a)	FB 5 is a compound containing one cation and one anion, both of which are listed in the
		Qualitative analysis notes.

	occurs. Record your observations.	
		[2]
(ii)	Describe another test to positively identify the cation in FB 5 . Carry out your test and record your observations.	
	test	
	observations	
		[1]

(i) Heat a small spatula measure of FB 5 in a hard-glass test-tube until no further change

	33323101		
(iii)	Put a 1 cm c	depth of di	lute l

(iv)

7

Put a 1 cm depth of dilute hydrochloric acid in a test-tube. Add a small spatula me of FB 5 .	easure
Record your observations.	
	[2]
Deduce the formula of FB 5 .	
FB 5 is	[1]

Question 3 continues on page 8.

© UCLES 2024

(b) You will devise chemical tests to distinguish between the two possible identities given for each of compounds FB 6, FB 7, FB 8 and FB 9.

In each case you should:

- use a 1 cm depth of the solution of the unknown compound in a test-tube
- use a boiling tube if you need to warm a mixture
- use a spatula measure of the unknown solid
- record details of your test(s) and your observations
- state your conclusion about the identity of the compound.
- (i) FB 6 is either aqueous chromium(III) sulfate or aqueous iron(II) sulfate.

(ii) FB 7 is either dilute hydrobromic acid or dilute nitric acid. If you select a test that gives a negative result, then you must carry out a further test that gives a positive result.

(iii) FB 8 is either magnesium carbonate or zinc carbonate.

* 0019655525109 *

9

(iv) FB 9 is either aqueous methanol or aqueous ethanol.
 Note: FB 9 is flammable and should not be heated with a flame.
 (When carrying out your test you may need to leave the reaction mixture to stand.)

FB 9 is	[2]
----------------	-----

[Total: 14]

Qualitative analysis notes

1 Reactions of cations

cation	reaction with										
	NaOH(aq)	NH ₃ (aq)									
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess									
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on warming	_									
barium, Ba ²⁺ (aq)	faint white ppt. is observed unless [Ba ²⁺ (aq)] is very low	no ppt.									
calcium, Ca ²⁺ (aq)	white ppt. unless [Ca ²⁺ (aq)] is very low	no ppt.									
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess									
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution									
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess									
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess									
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess									
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess									
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess									

10

2 Reactions of anions

anion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream/off-white ppt. with Ag+(aq) (partially soluble in NH3(aq))
iodide, I ⁻ (aq)	gives pale yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil; decolourises acidified aqueous KMnO ₄
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids); gives white ppt. with high [Ca ²⁺ (aq)]
sulfite, SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO ₄
thiosulfate, S ₂ O ₃ ²⁻ (aq)	gives off-white/pale yellow ppt. slowly with H+

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

11

4 Tests for elements

element	test and test result blue-black colour on addition of starch solution
iodine, I ₂	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm W} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 ^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

Elements
of
Table
Periodic
The

	18	2 He helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	궃	krypton 83.8	54	Xe	xenon 131.3	98	Rn	radon	118	Og	oganesson
	17		6	Щ	fluorine 19.0	17	Cl	chlorine 35.5	35	ğ	bromine 79.9	53	_	iodine 126.9	85	Αt	astatine	117	<u>S</u>	tennessine
	16		8	0	oxygen 16.0	16	ഗ	sulfur 32.1	34	Se	selenium 79.0	52	<u>a</u>	tellurium 127.6	84	Ро	polonium	116	_	livermorium
	15		7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sp	antimony 121.8	83	: <u>G</u>	bismuth 209.0	115	Mc	moscovium
	14		9	ပ	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	S	tin 118.7	82	Ър	lead 207.2	114	Εl	flerovium
	13		2	Ω	boron 10.8	13	Αl	aluminium 27.0	34	Ga	gallium 69.7	49	드	indium 114.8	84	lΤ	thallium 204.4	113	£	nihonium
								12	30	Zu	zinc 65.4	48	Cq	cadmium 112.4	80	Hg	mercury 200.6	112	S	copernicium
								7	59	_D	copper 63.5	47	Ag	silver 107.9	62	Αn	gold 197.0	111	Rg	roentgenium
dno								10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	Ŧ	platinum 195.1	110	Ds	darmstadtium
Group								6	27	ပိ	cobalt 58.9	45	Rh	rhodium 102.9	77	_	iridium 192.2	109	₩	meitnerium
		T hydrogen						80	56	Fe	iron 55.8	44	Ru	ruthenium 101.1	9/	SO	osmium 190.2	108	Hs	hassium
			_					7	25	Mn	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium
				loc	ass			9	24	ن	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium
		Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	q	niobium 92.9	73	Д	tantalum 180.9	105	Q O	dubnium
				ato	rela			4	22	j=	titanium 47.9	40	Zr	zirconium 91.2	72	士	hafnium 178.5	104	쪼	rutherfordium
								က	21	လွ	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids	
	2		4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	ഗ്	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium
	1		8	=	lithium 6.9	1	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	22	S	caesium 132.9	87	ŗ	francium

7.1	Pn	Intetium	175.0	103	۲	lawrencium	ı
20	Υb	ytterbium	173.1	102	2	nobelium	I
69	T	thulium	168.9	101	Md	mendelevium	ı
89	ш	erbinm	167.3	100	Fm	ferminm	1
29	운	holmium	164.9	66	Es	einsteinium	ı
99	ò	dysprosium	162.5	86	ర	californium	ı
65	Д	terbium	158.9	26	益	berkelium	ı
64	Вd	gadolinium	157.3	96	Cm	curium	ı
63	En	europium	152.0	92	Am	americium	ı
62	Sm	samarium	150.4	94	Pu	plutonium	ı
61	Pm	promethium	ı	93	ď	neptunium	ı
09	ρN	neodymium	144.2	92	\supset	uranium	238.0
59	Ā	praseodymium	140.9	91	Ра	protactinium	231.0
58	Ce	cerium	140.1	06	Ħ	thorium	232.0
22	La	anthanum	138.9	88	Ac	actinium	ı

lanthanoids actinoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

